STABILITY OF THE CONTRACTED STATE
OF A NONEQUILIBRIUM PLASMA
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Overheat instability (OI) in a nonequilibrium homogeneous plasma is related to the ionization instability
of the electron gas; the energy losses due to collision with heavy particles cannot balance the fluctuations in
the Joule heat generation, The criterion for the development of OI in a nonequilibrium plasma is the condition
dln 15/d In Te >1/2; Te is the time of the loss of momentum when an electron collides with heavier par-
ticles [1, 2]. Overheat instability also develops when the energy losses from the electron gas are deter-
mined by radiation [3-6], heat exchange with the walls [4, 7], or inelastic losses [2].

When OI develops nonlinearly, it leads to the formation of structures with inhomogeneous distributions
of current and electron temperature, which constitute layers in the plane case or columns in the cylindrical
case with increased density of current and electron temperature. The theory of such structures in semicon-
ductors — narrow and wide domains — has been constructed in [8, 10]. Analogous structures {contracted state
of the discharge) in a gas-discharge plasma have been investigated in [4, 7, 11-13]. In the contracted state
the discharge occupies a limited region, and we observe a regime with a normal current density; the current
density is independent of the total current., The experiments in [14] confirm the theoretical conclusions.

The development of OI in equilibrium plasma [15, 16] may also lead to the appearance of nonstationary
structures [17].

In order to explain a number of experimental facts, we much clarify the question of the stability of an
inhomogenecus current distribution, and in the case of mstabxhty we must also clarify the question of the
characteristic time of its development - the time during which the inhomogeneous state exists. The stablhty
of an inhomogeneous current distribution has been investigated in [8-10, 18, 19], in which it was shown that
a plane narrow domain for which the width of the column is of the same order as the thickness of the column
wall will be unstable, and a wide plane domain with a column width much greater than the wall thickness will
be stable for a sufficiently high resistance of the external circuit (a given current regime). Instability of the
plane narrow domain leads to its subdivision into cylindrical narrow domains which are stable [8].

The investigations of [8] are restricted to perturbations which are homogeneous in the direction of the
prineipal current [k-j, =0, (k is the wave vector of the perturbation, j, is the vector of the unperturbed
current with boundary conditions or,/6q’ =0, T} is the normal to the boundary of the specimeny}],

In the present study we consider the construction of inhomogeneous distributions of current and tem-
perature, when the energy losses from the electron gas are determined by elastic collisions with heavy par-
ticles, and we investigate the stability of these current distributions with respect to three-dimensional per-
turbations, Unlike [4, 8], we consider a broader class of boundary conditions for the electron temperature
LS, vS, By =0 {in [4, 8] the condition o7 /o =0 at the wall was investigated), In order to construct solutions
and investigate the stability, we use the method of singular expansions [20].

1. We assume that the electron concentration n and the electron temperature T are connected by
Saha's equation. We consider a strongly nonequilibrium plasma (T > 7,), in which there is an admixture of
a readily ionizable component. In this case the system of equations of the medium [21] in dimensionless form
reduces to the following:

C3S/0t + AUYDYS = Aly3S -+ o(yD): — F_, (1.1)
20 4 (dIn 6/dS)y Dy S = 0,

where U = T-Ya, — 3/2); C = ()™ [B3/2-& 4 ap(T-! 4 3/2-¢)]; ar =3 1lnn/dlnT; F_ =nltY; A, ¢ are the
dimensionless electronic thermal conductivity and electrical conductivity, respectively (A = ¢7); 7, dimen-
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sionless time of loss of momentum; S, heat-conduction potential (dS = AdT); @, generalized electric field
potential, related to the electric field E by the formula

vO® =E + A(l +arvT.

As the linear scale in the system (1 .1), we have taken the characteristic dimension of the region, b, and as
the time scale we have taken In*c*/(0*E*)®, If the thermal conductivity of the electrons satisfies the Wied-
emann—Franz law, then '

A = ko*T*/(ej*b), ¢ = kT*/I,

where I is the ionization potential and the rest of the notation is the same as in [20].

We shall try to find the solution of the system (1.1) in the region R = {12z 1, —, £y <Ly}
in the plane (x, y), part of whose boundary R, = {y = %I, } consists of ideally conductive electrodes, while
another part R, = {x = 41} consists of insulators with the boundary conditions (M° is a vector normal to
the insulator, X° is a vector lying in the plane of the electrode):

9IS = A(l + ag)dT/cy® on Ry, 0bion® = 0 on R,

S =8y(R), R=R,UR.. (1.2)

In all of our subsequent discussion, we shall not specify the form of the boundary condition for the
heat-conduction potential. In constructing a stationary solution in the case A< 1 (which is true for most
problems), we can use the method proposed in [20]. The solution of the problem is represented in the form
of two expansions in the small parameter A: the exterior expansion

= 3 MTy(e 1), = 3 N, (z,7) 1.3)
k=0 =0

and the interior expansion

T= 2 Ak@k(l'*v y*)v E= El AkEk (-Z'*, y*)v
h=0 k=0 :

where z* =a/A, y =y* or z* ==z, y = y/A.

In constructing plane stationary solutions of the equations of the interior expansion in a closed region,
we can have solutions of two types: solutions of the boundary-layer type at the boundary R and solutions of
. the standing-ionization-wave type, situated inside the region R. For the existence of the latter, it is nec-
essary that the function

F(S) = o(S)E* — F_(S)

have three zeros. This condition is satisfied if .
ar=dlnt/dIn T>1/2.

The first zero is connected with the ionization of the admixture, the second with the effect of the Coulomb
collisions, and the third with the ionization of the main gas. The construction of the zeroth approximation of
the interior expansion is discussed in [20], and therefore we shall not deal with the question here.

The equations of the exterior expansion can be obtained by substituting (1.3) into (1.1) and collecting
terms of the same degree in A, In the zeroth approximation the system (1.1) in the stationary case reduces
to a quasilinear equation in the function &. We use only electrodynamic boundary conditions. The partic-
ular solution of this system is a homogeneous solution (Ex, = const, Eyo = const), which is used for construc-
ting the solution. In this case the heat-conduction potential is also homogeneous and is found from the solu-
tion F(Sy) = 0. The stationary solution is constructed by joining the exterior and interior expansions. Since
the region of variation of the heat-conduction potential in the ionization wave and in the boundary layer ~ A,
as A — 0, the boundary layer and the ionization wave may be regarded as discontinuities, and therefore
solutions with ionization waves will be called discontinuous.
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Depending on the parameters of the external circuit, two types of stationary solutions ~ continuous and
discontinuous — may arise, The former are homogeneous solutions (S; = const, Eyy = const, Exy = 0) in al-
most the entire region R (the exterior domain of solution), except for narrow regions of thickness ~ A at
the boundary (the boundary-layer region), where the potential S, changes sharply from the value in the ex-
terior region to the boundary value S; (an example of such a potential distribution is given in Fig. la) The
volt—ampere characteristic (VAC) of such a solution is shown by the dashed curves in Fig. 2; here

1
o) = g foydl’;

the VAC is not single-valued over the field Ey,, since So(Eyo) is not a single-value function (in the segment
ef (Fig, 2)dlnvidln T> 1/2),

The discontinuous solutions consist of one or more stationary layered waves. A layered wave is a
combination of two ionization waves (wide domains in the terminology of [8]) or stationary solitions (narrow
domains) in the exterior region. The plane of the waves is parallel to the insulators. A layered wave con~
sists of three homogeneous solutions (Syy, Sgz, Syy, Fig. 1b), connected to each other by two narrow (~ A)
zones of sharp variation of the potential from Sy, to Sy; and from Sy to Sy (ionization waves). On the
VAC the segment bc corresponds to the layered wave and the segment eb to the solitions. Since the con-
tinuous structure of the ionization wave exists only for a completely determined field Eg, the VAC of the
layered wave is a straight line parallel to the <{joy> axis. The value of the field E; can be determined from
the condition [4]

Soa(Ec)
| F(S, E)dS=0.

So1(Ee)

The structure of the stationary solutions depends substanhally on the type of boundary conditions for
S on the insulator.

As was shown in [20], to the distribution of the potential S in the boundary layer there corresponds in
the phase plane (dS/dx*, S) a phase trajectory starting from the singular point (0, S)) and extending to S =
Sp. We consider the most real case Sy < S). Since the singular point (0, Sy), for values of S; satisfying
the inequality

> 1/2

is a center, in this case there is no stationary structure of the boundary layer on the insulators. Therefore,
the segment ef on the VAC (see Fig. 2) is not realized. For values of S; corresponding to the segment fc,
the phase trajectory starting from (0, S¢) cannot reach the value S = Sy, and therefore this segment of the
VAC is not realized either. Taking account of the slow variation of the parameters of heavy particles can
lead to an evolution of the resulting stationary structures for electron and electrodynamic quantities.

2. We consider the stability of one-dimensional distributions of the current (electric field) and tem-
perature (this corresponds to the case Iy — =). Suppose that the channel is unbounded in the direction of the
y and z axes but is bounded in the direction of the x axis (x = + 1) by insulators, and the unperturbed field ex-
tends in the direction of the y axis. If the current and temperature distributions are uniform in the exterior
region, then, using the method proposed in [22] and representing the variation of the perturbations as func-
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tions of time and the coordinates x and z in the form ~ exp (ikyy + ik;z — wt), we can obtain from the dis-
persion equation (as the field scale we took the unperturbed f1eld and as the characteristic length we took
the half-width of the channel) the following relation:

—~—‘—-—— 1— 2a,, + 2A%2 +(%)2 2(apo + z0) + f(i — 24,y + A%2)
{1 +( 2k> ] 10 . To 70 k;j 10 3
’ (2.1)
Imo= Aky (aro~3/2), k=VE+k, m=1,2,... '

Reow =

Here C,, a9, @ are the values of the functions defined in Eq. (1.1), taken for unperturbed parameters.
‘In obtaining (2.1), we disregarded the boundary layer, and the boundary conditions were given on the boundary
of the boundary layer, since for A << 1 the digpersion relation depends weakly on the type of boundary condi-
tions for the perturbations on the insulator [22].

¥ 0S,/0z =0 forx= %1, then the homogeneous states with a.,> 1/2 are unstable, and the perturba~
tions with k = 0 develop most rapidly. If 45,/6z<~0 for x= %1, then the homogeneous states are stable,
since the states with a,,>> 1/2 are not realized, '

For nonuniform current and temperature distributions in the exterior region (for discontinuous solu-
tions) we write (for simplicity, Cy = const):

S =S, (E) + O (E) exp (ik,y 4 ik,z .—E"‘; t),

® = By + A¥ (8) exp (ikyy + ik — 5;“11:), (2.2)
0

where & = 2/A; the subscript refers to the unperturbed solution; (© and AV are quantities of the same or-
der). Substituting (2.2) into (1.1) and disregarding the nonlinear texms, we veduce the investigation of the
stability of the inhomogeneous state to the following eigenvalue problem:

HY = — iAkyEyy d;’;%@
(2.3)
(H, + )0 = H, ¥ + A8 - iAk Ey U0,
1 d ~&
where H, = @) 2 % (E)—E—Ak H, = § V(&);
Hy = U, ”‘E‘ d; QZAkyUo ® Eym
V) = = g5 (0 — F-o):
k=ViZ+ 12, with boundary conditions:
E=a A-Y EE- =0, al dg + ik asAY - a, O 0. 2.4)

Here the constants «,, 4, 23 are comnected with the operator L by the relations

TS R N 8
L™ a(wS)ve,s> 2 LaS]vsve’ 27 LA (vD)lys,s

We_lconsider fhe problem of the stability of 2 nonuniform current distribution in the case &, ~ 4, ~ 1,
2, = 0, A< 1. If we introduce Green's function of the equation

H.GE ) =8 m), % peipml =

(here 8(¢ — ) is the Dirac delta function), system (2.3) can be reduced to a single integrodifferential equa-
tion for the function @:
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alt ding

5 GE M) 55 O(n) dn] + iAky E U8 + A?K%0, '

- ' (2.5)
E=x A1, “I%g‘+029=0-

(H, +©)8 = — H, [iAkyEyo

Since the system H,¥ =0, d¥/di(4+-A-Y) =0 has only a trivial solution, Green's function always exists and is
unique [23]. Green's function satisfies the following conditions:

G(EJ na k) < 01 _A_l < 51

n
G~ 0 (A, (&) ~ow

< A,

and, to within texms which are ~ A, has the form

1 ch (kAn — k) ch (kAE + &
G &, ) = — g T R, e,

(2.6)

For t>mn Green's function is obtained from (2.6} by interchanging & and 7,

The original system (2.3) has a singularity with respect to the parameter A (the singularity arises from
the presence of the A-! term in the boundary conditions (2.4)). It is possible to avoid this singularity in Eq,
(2.5) by representing '

_ S mE(m) */ — °°‘ ™ (M)
0= EOA 8m (£,°A), ® %OA @™ (A), .7

where ©M) and M) are of formal order unity with respect to A, The expansion (2.7) is not asymptotic
in the usual sense (since the functions @(m) depend on the parameter A) and have the form of a composite
expansion in the parameter A [24],

For the zeroth terms in expansion (2.7) we obtain the equation

H, NGO = O
(Hy + o) (2.8)

with the boundary conditions

460
= =+ 1\_1, {Zl—dE—' —+ 026(0) == {J,

oye

Equation (2.8) is analogous to the Schrodinger equation for a particle with potential V(¢), The function

V(£) consists of one potential well for the ionization (recombination) wave and two potential wells at a distance
~ A-! from each other for the layered wave (Fig. 3a, solid curve), and at a distance ~ 1 for a soliton (Fig. 3b,
solid curve), The function V(¢) was constructed without taking account of the boundary layer, whose effect on
stability will be discussed below. Sincethe operator H,is an Hermitian operator, the eigenfunctions ®gll) (m =
0,1,2, ... form a complete orthonormal system

a1
| ewedr — i

~A~1

2.9)

(if Cy depends on E, thenin (2.9) the function C,(§) appears under the integral sign), and the eigenvalue(s)
1

o <ol <... are real [22]. The equation for the first approximation can be represented in the form (@

m
is a correction ~A for the function @)
~-1
. a8 agdlno )
(Hy + o) 8 = — ik, Eyols 3 f = ds0° 6idn
AL AT
Ay dlno, . o __ gl :
— A%jEy0, | G(E ) =208 dn + ikey B U8 — 060 (2.10)
~A~1 o

with the boundary conditions

1 de%} (1)
E=x A al‘gg"l"lz@m =0.
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Expanding ®I(}l) in a series in ®(;)

oR = 3 4,61,
l§) e (2.11)

we can determine the quantities o4’ and A, (m=£1):

(1) 2 2 .7
O == — 2kyElI0amm + ll“yEyoﬁmm,

. 1 2 e ;
Aml = -m [2kyEyaaml - lkyEy,,ﬁm,], :
®] m

where
At ast al
" no
Ui = A f 0, () 81" (8) j GE ) —5= 653’(n)dn]ﬂd§;
a1 A1 0 1S¢(M)
At - ds Al dl
G aing
B = | UO(E)GS"’(&)[eﬁ:.”@)——&g" § ETS;‘"S(,,)"*"“W“]”’E'
. ~A~l ..A—l o

Continuing with this procedure, we can construct all the terms of the expansion (2.7). For the real com-
ponent of w we have

Rew = @) — 2AL2E mm- - ‘ (2.12)

Since G <0, @nn<<0 (for levels lying in the potential well) and the question of stability reduces to the con-
struction of the spectrum of the operator Hy. For ky = 0, Eq. (2.5) becomes the following:

(H, + o0 — A%2)6 = 0. (2.13)

Equation (2.13) can be investigated without using expansions in the parameter A, in a manner analogous
with [8].

By direct differentiation, we can convince ourselves that the function dS,/d¢ with the boundary condi-
tions dSy/d¢ = 0 for x = £1 is an eigenfunction of the operator H, with w = 0 (this fact was first used for in-
vestigating the itfbility of a flame front in [25]). For one ionization or recombination wave dS,/d¢ is the
eigenfunction ®0° (we do not consider the boundary layer on the insulators), and therefore one ionization (re-
combination) wave is stable with respect to three-dimensional perturbations., For a soliton dSo/dg coincides
with the eigenfunction ®§°), and for sufficiently small ky the soliton is unstable (w(g) < 0).

The method considered above cannot be used to investigate the stability of a layered wave (or several
layered waves) and several solitons, because of the structure of the spectrum of the operator H,. Let [¢
be the width of the layered wave (the distance between ionization and recombination waves).

In the case Ig — « the spectrum of the layered wave coincides with the spectrum of one ionization or
recombination wave (the function V(g) has one potential well, Fig. 4a), the distance between the eigenvalues
~ 1, and these eigenvalues are doubly degenerate. For finite values of [, the spectrum of H; for the lay-
ered wave is obtained from the foregoing by breaking up each eigenvalue into two values lying close to each
other which correspond to the symmetric and antisymmetric eigenfunctions (the layered wave is situated
symmetrically in the channel, Fig. 4h). The distance between these eigenvalues is transcendentally small,
-and for w; we can obtain [25]
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o = — V7o) exp (VT %).
Since Apm ~ (0l — o)™, it follows that among the eigenvalues w there will always be some such 4,,, ~0-
{exp (A1), from which it follows that (2.7) is invalid. In the case.of two layered waves the eigenvalues
corresponding to l, — = are divided into four levels lying close o each other (Fig. 4c). In this case there
will also be transcendentally large coefficients Ay, ;.

Let us consider the construction of the first approximation for the layered wave. The appearance of
transcendentally large quantities in the expansion (2.11) is due to the degeneracy of the eigenvalues, and the
multiplicity of degeneracy for each eigenvalue is two. Since the operator H; is linear, every linear combin-
ation of two eigenfunctions corresponding to a degenerate level is also an eigenfunction of this level. Suppose
that to the eigenvalue wl(fl) there correspond two eigenfunctions 6. and ©}). , We shall try to find the
eigenfunction 6% of the degenerate value in the form

BN = A,00] + 4,0m. (2.14)
Substituting (2.14) into (2.10), multiplying the second equation first by 6), and then by 0%, and integrating
with respect to ¢ from —A-1 to A-!, taking account of (2.9), we obtain a system for determining the values
of Ay, Ay, and “’(111)1’

4, ('leml - (1)5,})) + AsYmemy =0, (2.1
AVmime + 42 ('Ym‘zm‘z - (O(nt)) =0, ) 2.15)

2 o .
where Tmime = — 2By @mims + iky EyoBmime.

The condition for the solvability of the system (2.15) determines the value of wr(x?:

j Yrrm1 + Ymams 1
[m%)lld = —u§_m"m— = VZ(Ynnml = VYmama)® + YmimaVmemi- (2.16)

Let us estimate the order of the terms in Eq. (2.16). The functions 6%, and 0Y) for the low levels are
nonzero only in the regions of the potential wells, and in the other regions they are transcendentally small
(the functions ®(g) and ®(‘1}), corresponding to the degenerate level {0f”, o{”], are represented by dashed
curves in Fig, 3a, b, respectively). The function G(£, n) depends on £ and 7 only in terms of the com-
binations Af{ and An, and therefore for the quantity Yminj We can obtain the following estimates:

1
VYmimi & Ymama ~ const (Gl -+ Gz) -+ 0 (’_ exp (_ i\ )1

1 (2.17)

1
Ymim1 — Vmeme ~ VYmime ~ VYmem1~ O ('K exp (‘“ 7\‘))7

where G, = G(E = &, n =Ly, k); Go = GE = &, n = E,, k); &, & are the coordinates of the ionization and re-
combination waves; since the operator H, is symmetric with respect to § = 0, it follows that G; = G,.
Making use of (2.17), we can obtain, to within a transcendentally small quantity,

o) = 0% = Vmime- (2.18)
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Since a perturbation proportional to. dS,/d¢, is simply a displacement of the wavefront [25], the pertur-
bation @ has the form of constrictions of the current column (Fig. 5a), and ©1) is a deformation of the
current column (Fig. 5b). The true perturbations of the layered wave (@%0),__@(10)) are linear combinations of
these cases.

From (2.12), (2.18) it follows that the most unstable perturbations are those with ky = kz = 0. Inthis
case the system (2.3) reduces to Eq. (2.8). For one layered wave or soliton the perturbation corresponding
to w®@ ig unstable, and the increment decreases as [, increases; for the layered wave it is transcendentally
small. This perturbation is a compression or elongation of the current column (f; = Igp + a X explw 0y,

a << 1), and can be suppressed by the external circuit if that circuit has a sufficiently high resistance (in a
specified-current regime this perturbation is, ingeneral, inadmissible). For a soliton, since the zone of
current inhomogeneity is small, the external circuit cannot substantially affect the perturbation increment
[8]. Since a soliton is the limiting case of a layered wave (as I — 0), for a specified resistance in the ex-
ternal circuit there exists a critical value of I; above which the system becomes stable. Instability of a
plane soliton leads to its breakdown into cylindrical solitons [8].

In cases with two layered waves w(g) = 0 there are three types of perturbations for which the increment
of instability is less than zero (o <0, o\ <0, 0® <0).. A perturbation with w = () is the simultaneous
compression or expansion of the layered waves and leads to a change in the state of the external circuit, and
therefore this perturbation can be suppressed by the external circuit.

In the development of a perturbation with w = w(‘l’), the width of one wave decreases, while the width
of the other increases. Since this perturbation is antisymmetric, it cannot be suppressed by the external
circuit. A perturbation with w = w(‘z’) is the motion of the waves either toward each other or away from
each other. FEven though this perturbation is symmetric, the external circuit has little effect on its devel-
opment. From the foregoing it follows that the most unstable perturbation will be one with w = w({), and
this means that a soluution with two or more layered waves is unstable, Since the increment of this insta-
bility is transcendentally small, it appears that in gas-discharge experiments we can sometimes observe
solutions with two layered waves [14].

When there is a boundary layer, we observe an additional potential § V() (for the case when the tem-
perature on the boundary is less than S, this is shown in Fig, 6). A correction to w can be found by the
method of perturbation [19]

. =
dom=§ [6WT 8V () dL

—A"1

Using the asymptotic form of 6{, as &— =+ A-1, we obtain

: 1
a1 1 —I-»_Tc
Soma | SV(E)dEexp|— VTV (S —5].
_A—l )

We have the same order and sign for the additional term due to the difference from zero when E==xA"" of
the quantity a,d(dS,/dE)/dE -+ a,dS,/dt. The quantity added to the frequency because of the boundary layer de-
pends on the sign of 8V(E). In the case when the temperature at the wall is less than S,;, 6V(E) and 8o > 0.
Since the negative value for the layered wave is of the same order of magnitude as dom, the boundary layer
may shift the negative eigenvalue o into the stability region. If §V(¢)< 0, the boundary layer leads to

an additional instability in the inhomogeneous solutions.
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